考试
2022-12-17 04:25:53

某款游戏共有7名英雄供玩家选择,7名英雄的能力值恰好为1-7

题目描述

[单选题]

某款游戏共有7名英雄供玩家选择,7名英雄的能力值恰好为17的不同整数。每局游戏开始前,玩家需要任选3名英雄进行组队。玩家阿坤在进行了无数次的组队尝试后发现,不能一味选择能力值高的英雄组队,只有当3名英雄的能力值平均数大于3且小于5时才能获胜。则阿坤在组队尝试过程中的胜率是()。

A.20%
B.38%
C.50%
D.60%

答案解析

答案解析:第一步:判断题型------本题为概率问题第二步:分析作答三名英雄的能力值平均数在3到5之间才能获胜;则三名英雄的能力总值在3×3=9到3×5=15之间,即10、11、12、13、14。方法一:情况较复杂,考虑枚举;如上表所示,组队的三名英雄的总能力值在9到15之间的情况总数为4+4+5+4+4=21种;组队的3名英雄的能力值取值情况总数为有种;则阿坤在组队尝试过程中的胜率是。方法二:反向思考,不满足条件情况有两种:(1)能力值之和小于等于9有(6、2、1)、(5、3、1)、(5、2、1)以及4及以下的4个数字(平均数必小于3)任意选择3个有种,共3+4=7种;(2)能力值之和大于等于15有(2、6、7)、(3、6、7)、(3、5、7)以及4及4以上的4个数字(平均数必大于5)任选3个有种,共3+4=7种。不满足的情况数一共有7+7=14种,总情况数有种;则满足三名英雄的能力值平均数在3到5之间概率为,即阿坤在组队尝试过程中的胜率。故本题选D。【2020-深圳Ⅰ-055】   

参考答案:D

加载中...
AI正在思考中,请稍候...